BLOAT (RUMEN TYMPANY)

Presented by: Christina Cooper
What is bloat?

- Distention of the rumen with fermentation gasses
 - Primary bloat
 - Persistent foam mixed with rumen contents
 - Secondary bloat
 - Free gas separated from rumen ingesta
- Bloat is more common in cattle than in other ruminants
- Certain individual cattle are more susceptible
Primary ruminal tympany

- **FROTHY BLOAT**
 - Often associated with dairy cows that have recently been turned out on lush new-growth pastures (alfalfa, clover)
 - Cause: Entrapment of rumen gas in a stable foam
 - Small gas bubbles cannot coalesce
 - Eructation cannot occur → Rumen pressure increases
Several animal and plant factors influence the formation of the stable foam.

- **Bloat-producing pastures (lush pastures)**
 - More rapid bacterial digestion and intra-ruminal particle suspension
 - Release chloroplasts that trap gas bubbles and create a very stable foam with high surface tension

- **Soluble leaf proteins, saponins, and hemicelloses form a monolayer around rumen gas bubbles**
 - Most stable at pH of 6.0
 - Normal rumen pH ranges from 5.5 – 7.0

- **Succulent forages decrease the production of salivary mucin (an anti-foaming agent)**
Leguminous bloat is most common when cattle are placed on lush pastures, but also occurs when very high quality hay is fed.
Physiology

- Bloat-causing forage and animal factors combine and result in an increased concentration of small feed particles in the rumen
 - Usually over a 24-hour period
- Small gas bubbles do not coalesce, foam collects in the cardia and forestomach, and the animal is unable to eructate
Feedlot animals

- High-carbohydrate/ finely ground grain diet
 - Slime-producing rumen bacteria create an insoluble mucoprotein slime that stabilizes the foam
- Froth is made more stable by:
 - Fine particulate matter (finely ground grain)
 - Low roughage intake
 - Low pH created by lactate and VFA production
 - Decreased salivation due to fine grain diet (lessens intra-ruminal buffering)
- Bloat is most common in cattle that have been on a grain diet for 1-2 months
Secondary ruminal tympany

- **FREE GAS BLOAT** – Failure of eructation
 - Physical obstruction of eructation
 - Esophageal obstruction
 - Foreign body – apple or potato
 - Stenosis
 - Pressure from surrounding structures outside the esophagus (ex: lymph nodes, abscess from perivascular injections, *Hypoderma lineatum* reactions, and cervical neoplasia)
 - Interference with esophageal groove function
 - Vagal indigestion
 - Chronic pneumonia, traumatic reticuloperitonitis, tumors, abomasal torsion
 - Diaphragmatic hernia
 - Tumors
 - Interference with the eructation reflex nerve pathways
 - Lesions of the wall of the reticulum
Secondary/other causes of gas bloat

- Acute onset of ruminal atony
 - Ex: Grain overload
 - Ex: Anaphylaxis
 - Causes a reduction in rumen pH
 - Esophagitis and/or rumenitis
 - Interfere with eructation

- Hypocalcemia (milk fever)

- Calves up to six months of age
 - Often of unknown cause
 - Can resolve spontaneously
In cows that are not frequently observed (dry dairy cows, feedlot, or pasture), sudden death is the most frequently observed clinical sign associated with bloat.
Clinical presentation

- Secondary gas bloat
 - Increased TPR
 - Salivation, anxiety, mouth-breathing
 - Unusual position, often lateral recumbency
 - Excess gas lies free on top of rumen ingesta and fluid
 - Tympanic resonance over dorsal abdomen, left of midline
 - Percussion: Higher pitched ping than with frothy bloat
 - Rumen distention detectable via rectal examination
 - Stomach tube/trocarization releases large quantities of gas and alleviates distention
Necropsy

- Congestion and hemorrhage of the lymph nodes of the head and neck, epicardium, and upper respiratory tract
- Compressed lungs +/- interbronchial hemorrhage
- Esophageal “bloat line”
 - Cervical esophagus is congested and hemorrhagic
 - Thoracic esophagus is pale and blanched
- Rumen distention
- Pale liver

Diagnosis

- Accurate history
- Clinical signs
- Passage of an orogastric tube
 - Tube cannot be passed
 - Free gas bloat due to obstruction
 - Tube is passed, rumen gas escapes
 - Free gas bloat with/without obstruction
 - Tube is passed, rumen gas does not readily escape
 - Frothy bloat
 - pH < 5.5
 - Feedlot bloat
 - pH > 5.5
 - Pasture bloat
Treatment

- Stomach tube
 - Move back and forth to locate rumen gas
 - Administer anti-foaming agent for frothy bloat
- Trocar and cannula
 - If unsuccessful, emergency rumenotomy
 - If the cannula provides some relief, administer anti-foaming agent in the case of frothy bloat
- Emergency rumenotomy
 - Life-threatening cases
 - Explosive release of rumen contents
- Rumen fistula
 - Temporary relief for acute free gas bloat due to an intraesophageal mass
 - Remove mass manually or with the aid of a wire loop to snare the object
 - Treat with post-surgical penicillin

Picture: http://www.shoof.co.nz/prdimages/206931.jpg
Anti-foaming agents

- Vegetable oil: 250 – 500mL PO
 - Peanut
 - Corn
 - Soybean
- Mineral Oil: 250 – 500mL PO
- Dioctyl Sodium Sulfosuccinate (Docusate)
 - Surfactant
 - Commonly incorporated into anti-bloat remedies
- Poloxalene: 25 – 50g PO
 - For legume bloat, but not feedlot bloat
Prognosis

- **Frothy bloat**: Favorable with rapid intervention
 - Simple indigestion may occur post-treatment
 - Feed quality hay for 1 – 2 days
 - Rarely there is development of peritonitis or cellulitis in animals that undergo a rumenotomy

- **Acute free gas bloat**: Excellent
 - If offending object is removed
 - If the object must be left in place to be swallowed, the complications may develop
 - Sequelae to trocarization or rumen fistula
 - Secondary esophageal stricture
Prevention

- Feed hay before turning cattle on pasture
- Hay must be at least 1/3 of the diet
- Feed mature pastures (immature rapidly growing pastures are more likely to result in bloat)
- Administer anti-foaming agent during high risk
 - Drench twice per day (ex: at milking)
 - Add to feed or water or feed blocks
 - Paint onto the flank of the animal – to be licked off
Anti-foaming agents

- Oils: 60 – 120mL/head/day
- Fats: 60 – 120mL/head/day
- Alcohol ethoxylate detergent
- Ionophores (ex: monensin, lasaloc)
- Synthetic nonionic surfactant
 - Poloxalene: 10 – 20g/head/day
Prevention (continued)

- Pasture consisting of clover and grasses in equal amounts will keep the incidence of bloat low while maintaining high production
- Alfalfa: Feed low initial rate of digestion (LIRD) cultivars (commercially available)
- Add legumes with high condensed tannins (10% sanfoin) to the pasture seeding mix
- Feedlot ration should contain 10 – 15% roughage
 - Cereal
 - Grain straw
 - Grass hay
 - Rolled or cracked, not finely ground
 - Avoid pelleted feed from finely ground grain
References

- The Merck Veterinary Manual
- Ogilvie, Timothy H. Large Animal Internal Medicine. The National Veterinary Medical Series for Independent Study. 1998 Lippencott Williams and Wilkins.